SGX-MR

Regulating Dataflows for Protecting Access Patterns
of Data-Intensive SGX Applications

AKM Mubashwir Alam 1 Sagar Sharma 2 Keke Chen !

! Trustworthy and Intelligent Computing Lab (TIC), Northwestern Mutual Data Science Institute,
Department of Computer Science, Marquette University
2 HP Inc.

BE THE
il MARQUETIE | BETHE o

Cloud Computing and Security Concerns

Benefits of cloud computing:

* Economics: pay-as-you-use billing model

* Scalability: plenty of resources for storage and computing
* Accessibility: Easy access regardless of time and location

Compromise

Security concerns:

Program Data Securitv?
e . y:
-~ =] +
P >
® D —
N
User v
Result Tamper program

Server v Tamper data
v' Steal sensitive information

Goal

* Confidentiality: Server learns nothing

* Integrity: Server returns accurate result
» Efficiency: Faster execution time

BE THE
Ul\gféE%ngleE]TE DIFFERENCE.

Existing solutions

e Software-based crypto approaches

— Fully Homomorphic Encryption (FHE)
— Secure Multi-party Computation (SMC) * ==

e Trusted Execution Environment (TEE)

e Confidentiality @

e ntegrity

N

e Efficiency

QQ

BE THE
Ul\gféE%ngleE]TE DIFFERENCE.

Intel SGX as Trusted Execution Environment

Example Procedure

*

* Gain trust via Remote Attestation g T Y

! Application i

* Deliver sensitive data in Encrypted form e aseessasssssssssssna, |
12 S, o .

« Signed Binary executes as Enclave Program i g' Untrusted Part \‘: ! Trusted Enclave i

« User data . — ' 3

i icreate_enclave(_\)i /> :

* Create Enclave with signed binary ' : i

. _ ' ECALL : i

* Call trusted functions via Enclave Interface i Encrypted I <:> D) plinata |

+ ECALL 1 D ocALL |

. OCALL g] ' i

1

1

1

Restricted by CPU

Privileged System Code

(UYp——

0OS, VMM, BIOS

BE THE
Ul\gféE%ngyE]TE DIFFERENCE.

Privacy Issues of SGX

* Intel SGX vulnerable from software attacks.
* Page Fault Attack
» Data/Page Access Pattern Attacks
e Branch Shadowing Attack

e Other side Channels (Out of our scope)

* Speculative Execution Attack
* Injection based Attack

v Software based mitigations are not sufficient
v Require Microarchitectural level patch

—

BE THE
Ul\gféE%ngleE]TE DIFFERENCE.

Traceable Memory Access of SGX Application

* OS observes memory interaction
* access untrusted memory via ECALL: - data/block access pattern
* Kernel dependency for Enclave page swapping - page fault attacks

SGX Application

ECALL/OCALL
Gy | Trusted Memory
Untrusted Memory y QIPage swapping
oI
‘ Kernel ‘

BE THE
il MARQUETIE | BETHE o

Existing Approach to Access Pattern Protection

Oblivious RAM

e ORAM Controller in Enclave
e Path ORAM and Circuit ORAM algorithms

* Limitations
« Still not efficient: O(log n) operations per access
* Only protects a set of data access
* Cannot protect application specific code access, e.g., conditional branching

BE THE
Ul\gféE%ngyE]TE DIFFERENCE.

Towards Data Access Pattern Protection

Our Observation
* ORAM incurs high computation cost
* Regulating data-flow can be more efficient than ORAM primitive

* Some Application Specific Access Pattern does not leak additional information
e E.g., Sequential Block Access

* Other access patterns can be replaced with specific Oblivious Algorithms
* E.g., Oblivious Sorting, Oblivious Merge, Oblivious Swap, etc.

e Challenges

* Need detail analysis for each application specific access patterns
* Time Consuming
* Error Prone

BE THE
il MARQUETIE | BETHE o

SGX-MR: Our Contribution

* Regulating the dataflow with MapReduce

* Designed robust mitigation methods to prevent

* Untrusted memory access pattern leakages
* In-Enclave memory access pattern leakages

* Implemented the lightweight SGX-MR framework

* Flexible to adapt to the enclave’s restriction. E.g., limited memory

* Conducted extensive component-wise experiments

* Understand the cost and performance
* Compare with ORAM based SGX approach.
e Result: SGX-MR can be several times faster than ORAM based solutions

BE THE
Ul\gféE%ngleE]TE DIFFERENCE.

SGX-MR: High Level Design

* Framework divides into two parts

* Untrusted component contains

small initiator program
encrypted files and data blocks

* Enclave holds the rest

MR Controller manages the data flow
Only access equal size blocks

sequentially
obliviously

User define functions execute in Enclave
Mapper
Combiner

Reducer

M

Block n

/Untrusted\

Encrypted
Files

emory
Block 1
Block 2

()
SGX-MR

Initiator

\S

7

SGX -MR
Map()
Combiner()
Data-Block In MR Reduce()
» | Controller -
Data-Block Out Oblivious
< Sort
Block Data Crypto
Manager Module

Trusted ()
Untrusted ()

BE THE
Ul\gféE%ngleE]TE DIFFERENCE.

SGX-MR: Regulating Data-flows

Process 3-4 blocks in Enclave at a time

Map phase Trusted

Untrusted © - _ 3

- -

* Read blocks sequentially

e Perform mapping and send results to combiner Enclave Memory
« Combiner aggregates output per block Iterative
* Sequentially writes blocks Processing ﬂ
e Sort Phase [-> Map —>Combiner1r Sort 1 [-> Reduce 1
* Perform block-wise sorting PR Siantiukel sieiietieieiheltee e, A el el Al il —=-.
. N Data Block Data Block Data Block Data Block
Reads and Writes data blocks : Inage Inage Ipage Ipage |
* Reduce Untrusted Memory
e Sequentially reads sorted blocks ~ TTmommmmoo oo oSS S S S m oo s mmm T
« Aggregate group-wise results Regulating Data-flows between Trusted and Untrusted Memory

e Sequentially writes the blocks

BE THE
Ul\gféE%ngleE]TE DIFFERENCE.

SGX-MR: Analyzing Access Pattern Leakages

Our Analysis

* Multiple critical section leaks sensitive information

* Analyze each of the leakages

* Propose mitigation methods for each leakages

Leakages in Merge Sort

Enclave Memory

Iterative
Processing

[> Map ~>/Combiner

Data Block
. /page

Reduce phase leaks group size

Input Blocks

. (K2-V1 K2-V2 K2-V3} {KZ-V4 K2-V5 K2-V6 { K2-V7 K3-V1 K3-V2 } K3-V3

L

Kev |

Ouptut Blocks

In-Enclave Access pattern
via page fault

Block-level Access Pattern
From untrusted memory

Reduce

Untrusted Memory

Data Block| *,
/page

In-Enclave Access Pattern

if (a > c)
// page access

swap (a, c) ‘

else oI
// no page access

Data dependent branching

BE THE
Ul\gféE%ngyE]TE DIFFERENCE.

SGX-MR: Access Pattern Leakages - Mitigation

Mitigation Methods

Replacing Merge Sort with Oblivious Sort. E.g., Bitonic Sort
Applying oblivious_swap, oblivious_copy, oblivious_merge, etc.
Making the block-level combiner mandatory

Synergy of curated components efficiently

hides the access pattern leakages

Estimated Group Size

Map]

!

[Combiner]

:

[Oblivious Sort]

}

Reduce]

Map Output per Block

Aggregate partial groups

Break links : input - output

Obfuscated group size

BE THE
Ul\gféE%ngyE]TE DIFFERENCE.

SGX-MR: Experimental Evaluation

Experimental Setup

 SGX-MR implemented in C++
 Core framework written within 2000 lines of code

e Entire framework runs in Enclave
* Except starter program

* Implemented custom Bitonic Sort

e Adopt block level operation

* Covers all proposed mitigation methods
* Leverages CMOQV instruction

e Conditional swaps

e Sensitive branching patterns

* Relies on 128-bit AES-CTR mode encryption (SGX SDK)

BE THE
Ul\gféE%ngleE]TE DIFFERENCE.

SGX-MR: Experimental Evaluation

Sample Application

* Experimented SGX-MR with two Applications
 WordCount Problem
 KMeans Clustering

Baseline Version

e Compare results with ORAM based approach
* Applied ORAM integrated Merge Sort with CMOV protection
* We utilized ZeroTrace’s ORAM implementation

BE THE
Ul\gféE%ngyE]TE DIFFERENCE.

SGX-MR: Experimental Results

Protecting Group Size

)
] i
— Actual Froquency TR
10° || — Observed Frequency 1 4 I
P
2 104] S 3 :
S 3 o
2 40 g o
8@ B 9
= O
= 107 |
1
10! W V\
100 “ A A A 0
0 20 40 60 80 100 1 2) 4 5
Top 100 words ordered by frequency Cluster Id
Figure A Figure B
WordCount: Observed frequency vs actual frequency KMeans: Observed cluster size vs actual cluster size

BE THE
Ul\gfé&s%yE]TE DIFFERENCE.

SGX-MR: Experimental Results

Finally, Application-based Evaluation

—— ORAM 5.10% | |—e— ORAM
5.10° | | - SGX-MR —=— SGX-MR
g g 4-10°
o 4-10° v
5 £ 3.107]
=)
o S0P a
S S
g N |
§ 2.106 | § 2-10
] >
m m
1-106 1-10° |
O |
0 4 8 12 16 20 0
Document Size (megabytes) Coordinate File Size (megabytes)
Figure A Figure B
Application Level Comparison of WordCount Application Level Comparison of KMeans Clustering

BE THE
Ul\gféE%ngyE]TE DIFFERENCE.

SGX-MR: Summary

e SGX-MR avoids

e expensive ORAM as block I/0 and

* error-prone application-specific design of access pattern protection

* |t uses MapReduce to regulate application dataflows — protects a large

class of data-intensive applications

* |t addresses both access-pattern attacks and page-fault attacks

BE THE
Ul\gféE%ngleE]TE DIFFERENCE.

Additional Slides

Traceable Memory Access: Example

Consider a Malicious OS
e Cannot see actual data
* Capable of observing Memory Accesses

e.g., Applying HashMap to compute frequency

»

Sequentially read the array (safe)

* Direct Access to memory
> Memory

Access # of times 3 2 1 80 1 2

Reveals frequency distribution

‘ BE THE
oI Ul\gféﬁlﬁ%yEHE DIFFERENCE.

SGX-MR: Access Pattern Leakages - Sorting

Sorting Algorithm (i.e., Merge Sort) leaks relative order

* Adversary observes block reading pattern from Untrusted Memory
 |f R4 <L1, then the Merge Phase reads R1 to R4 one by
* Thenreads L1 to L4.

* Reading pattern leaks relative order of the blocks

mERrE Lo

(I /4}

[RIIRZJR3IR4: L1 R4<=L1" 4

BE THE
Ul\gfélgs%IYJET[E DIFFERENCE.

SGX-MR: Access Pattern Leakages - Sorting

Sequence 1 Sequence 2

S1 | S2 S3 S4 S5 S6

Wy g
NS

1 2 3 4
Mitigation for Block Access T
* Replacing Merge Sort with Oblivious Sorting algorithm BitonicSort-.. |dentical Block
* We implemented block-level Bitonic Sort .. Access Patterns
* Uniform block access does not leak pattern l
1 2 3 4

/N ’
s331 s4ss S5 S6

BE THE
Ul\gféE%ngleE]TE DIFFERENCE.

SGX-MR: Access Pattern Leakages - Sorting

Leakage for In-Enclave Memory Access @E ¢

d
» Page-fault attack reveals access pattern for Enclave Memory
* Reveals memory page access % % % {}

* Sequential memory access does not reveal additional information \></

1 2
Data__‘_j__e_R_e_'f‘_‘?'?_r_‘_t_ branching
Compare and Swap in Bitonic Sort l o | \
1 a > c

* Generates data dependent branching)) | /) page access |
* Reveals partial ordering of records Bltoncherge . swap (a, c) %

l // no page access

1 2
Cc a d

BE THE
Ul\gfélgs%yE]TE DIFFERENCE.

SGX-MR: Access Pattern Leakages - Sorting

Mitigation for In-Enclave Memory Access

Adopt oblivious swap, oblivious move, etc.

Leverage CMOV (conditional move)
instruction from x86 instruction set

Sensitive
Array
a oo CMOV
b T >
c -"“"":::::::3; .b
________ retrieved
d L
value

Accessing every memory location from

+ sensitive array to hide the actual position i

Copy Information
from sensitive array

- ~

if ((a > c)

// page access

O _swap (a,c, true)
else

// page access

O swap (a,c, false)

Oblivious
swap

BE THE
Ul\gféE%ngyE]TE DIFFERENCE.

SGX-MR: Access Pattern Leakages - Reducing

Input Blocks

: [K2-V1 K2-V2 K2—V3] [KZ—V4 K2-V5 K2-V6] [K2-V7 K3-V1 K3-V2] K3-V3

L J

Reduce phase leaks group size 1

e K2 spread over three blocks

* Reads three blocks but write one block
* Adversary observes group wise aggregation Reduce
* Reveals average group size

K2-V A

| >~/

Ouptut Blocks

BE THE
Ul\gféE%ngyE]TE DIFFERENCE.

SGX-MR: Experimental Results

Block Access

Execution Time(ms)

s||-® ORAM Block Access

10° ' _o— Sequential Access in SGX-MR
. 4

104 cre-—-n@nnt®

- . e
L--

103

102

70 /,/0%—‘

3,000 9,000 15,000 21,000

Number of Blocks

Figure A

ORAM protected Block access can be x1000 times slower
than sequential Block Access

Execution Time(ms)

106

10°

104 n

-o- ORAM Block Access
—e— Sequential Access in SGX-MR

S

O -0 -0---_@-—--0.__

Te

2,000 4,000
Block Size

Figure B

6,000

While the block size is increased from 1 KB to 6 MB,
the execution time is reduced by about 50 to 100 times

MARQUEITE

UNIVERSITY

BE THE
DIFFERENCE.

SGX-MR: Experimental Results

Oblivious Sort vs ORAM integrated Merge Sort

7-10°

s [-® Merge Sort + ORAM R
— 6-10° I'| —e— Bitonic Sort in SGX-MR -
8 5.100 2
() 4

¥ 4

g 4-10% | > =
H .
= >
S 3-10° o
E
§ 2.10°% o
= .’.

5 ,

0 5,000 10,000 15,000 20,000

Number of Blocks

Figure A

MergeSort with the ORAM block 1/0O results
significantly higher costs than
a dedicated oblivious sorting

BE THE
Ul\gféE%ngyE]TE DIFFERENCE.

SGX-MR: Experimental Results

Mitigations for Sorting

] T
1.2 . 107 || —— SGX-MR with BitonicSort + o-swap 9.10° -e- MergeSort + ORAM
—=— SGX-MR with BitonicSort 1 —&— SGX-MR: BitonicSort with o-swap

. —o— SGX-MR with MergeSort o 5 —o— SGX-MR: BitonicSort
E 9.108 & 707
Q Q \
Z 5 ..
= 100 | ey -
5 6-10° g > T
45 E =S - - -
3 8 5] - B

3-10 o T
LE 3.10° I}j B\E\B\E___E\;__:

i
1-10° | }
500 2,000 4,000 6,000
Document Collection Size (megabytes) Block Size
Figure A Figure B*
Mitigation method brings noticeable cost Still, efficient than ORAM based solution
*Figure B also shows block size have significant impact on execution time MARQUETTE | BETHE

UNIVERSITY DIFFERENCE.

