
SGX-MR
Regulating Dataflows for Protecting Access Patterns

of Data-Intensive SGX Applications

AKM Mubashwir Alam 1 Sagar Sharma 2 Keke Chen 1

1 Trustworthy and Intelligent Computing Lab (TIC), Northwestern Mutual Data Science Institute,
Department of Computer Science, Marquette University

2 HP Inc.

Cloud Computing and Security Concerns

Benefits of cloud computing:
• Economics: pay-as-you-use billing model
• Scalability: plenty of resources for storage and computing
• Accessibility: Easy access regardless of time and location

Program Data

ResultUser

Server
ü Tamper program
ü Tamper data
ü Steal sensitive information

+

Compromise
Security?

Security concerns:

Goal
• Confidentiality: Server learns nothing
• Integrity: Server returns accurate result
• Efficiency: Faster execution time

Existing solutions

• Software-based crypto approaches
– Fully Homomorphic Encryption (FHE)
– Secure Multi-party Computation (SMC)

• Trusted Execution Environment (TEE)
• Confidentiality
• Integrity
• Efficiency

Example Procedure

• Gain trust via Remote Attestation

• Deliver sensitive data in Encrypted form
• Signed Binary executes as Enclave Program
• User data

• Create Enclave with signed binary

• Call trusted functions via Enclave Interface
• ECALL
• OCALL

Intel SGX as Trusted Execution Environment

Application

Trusted EnclaveUntrusted Part

Plain DataEncrypted
Data

Privileged System Code
OS, VMM, BIOS

</>create_enclave()

Restricted by CPU

ECALL

OCALL

• Intel SGX vulnerable from software attacks.
• Page Fault Attack
• Data/Page Access Pattern Attacks
• Branch Shadowing Attack

• Other side Channels (Out of our scope)
• Speculative Execution Attack
• Injection based Attack

Privacy Issues of SGX

ü Software based mitigations are not sufficient
ü Require Microarchitectural level patch

Untrusted Memory

Trusted Memory

Kernel

ECALL/OCALL

Page swapping

SGX Application

• OS observes memory interaction
• access untrusted memory via ECALL: - data/block access pattern
• Kernel dependency for Enclave page swapping - page fault attacks

Traceable Memory Access of SGX Application

Oblivious RAM
• ORAM Controller in Enclave
• Path ORAM and Circuit ORAM algorithms

• Limitations
• Still not efficient: O(log n) operations per access
• Only protects a set of data access
• Cannot protect application specific code access, e.g., conditional branching

Existing Approach to Access Pattern Protection

Our Observation
• ORAM incurs high computation cost
• Regulating data-flow can be more efficient than ORAM primitive
• Some Application Specific Access Pattern does not leak additional information

• E.g., Sequential Block Access
• Other access patterns can be replaced with specific Oblivious Algorithms

• E.g., Oblivious Sorting, Oblivious Merge, Oblivious Swap, etc.

• Challenges
• Need detail analysis for each application specific access patterns

• Time Consuming
• Error Prone

Towards Data Access Pattern Protection

• Regulating the dataflow with MapReduce

• Designed robust mitigation methods to prevent
• Untrusted memory access pattern leakages
• In-Enclave memory access pattern leakages

• Implemented the lightweight SGX-MR framework
• Flexible to adapt to the enclave’s restriction. E.g., limited memory

• Conducted extensive component-wise experiments
• Understand the cost and performance
• Compare with ORAM based SGX approach.
• Result: SGX-MR can be several times faster than ORAM based solutions

SGX-MR: Our Contribution

SGX-MR: High Level Design

Trusted
Untrusted

• Framework divides into two parts

• Untrusted component contains
• small initiator program
• encrypted files and data blocks

• Enclave holds the rest
• MR Controller manages the data flow
• Only access equal size blocks

• sequentially
• obliviously

• User define functions execute in Enclave
• Mapper
• Combiner
• Reducer

Regulating Data-flows between Trusted and Untrusted Memory

SGX-MR: Regulating Data-flows

Trusted
Untrusted

• Process 3-4 blocks in Enclave at a time

• Map phase
• Read blocks sequentially
• Perform mapping and send results to combiner
• Combiner aggregates output per block
• Sequentially writes blocks

• Sort Phase
• Perform block-wise sorting
• Reads and Writes data blocks

• Reduce
• Sequentially reads sorted blocks
• Aggregate group-wise results
• Sequentially writes the blocks

SGX-MR: Analyzing Access Pattern Leakages

Our Analysis
• Multiple critical section leaks sensitive information

• Analyze each of the leakages

• Propose mitigation methods for each leakages

Block-level Access Pattern
From untrusted memory

In-Enclave Access pattern
via page fault

Leakages in Merge Sort Reduce phase leaks group size In-Enclave Access Pattern

Data dependent branching

1 2 3

SGX-MR: Access Pattern Leakages - Mitigation

Map

Combiner

Oblivious Sort

Reduce

Map Output per Block

Aggregate partial groups

Break links : input - output

Obfuscated group size

Estimated Group Size

Mitigation Methods
• Replacing Merge Sort with Oblivious Sort. E.g., Bitonic Sort
• Applying oblivious_swap, oblivious_copy, oblivious_merge, etc.
• Making the block-level combiner mandatory

Synergy of curated components efficiently
hides the access pattern leakages

SGX-MR: Experimental Evaluation

Experimental Setup
• SGX-MR implemented in C++

• Core framework written within 2000 lines of code

• Entire framework runs in Enclave
• Except starter program

• Implemented custom Bitonic Sort
• Adopt block level operation
• Covers all proposed mitigation methods

• Leverages CMOV instruction
• Conditional swaps
• Sensitive branching patterns

• Relies on 128-bit AES-CTR mode encryption (SGX SDK)

SGX-MR: Experimental Evaluation

Sample Application
• Experimented SGX-MR with two Applications

• WordCount Problem
• KMeans Clustering

Baseline Version
• Compare results with ORAM based approach
• Applied ORAM integrated Merge Sort with CMOV protection
• We utilized ZeroTrace’s ORAM implementation

SGX-MR: Experimental Results

Protecting Group Size

WordCount: Observed frequency vs actual frequency KMeans: Observed cluster size vs actual cluster size

Figure A Figure B

SGX-MR: Experimental Results

Finally, Application-based Evaluation

Application Level Comparison of KMeans ClusteringApplication Level Comparison of WordCount

Figure A Figure B

SGX-MR: Summary

• SGX-MR avoids

• expensive ORAM as block I/O and

• error-prone application-specific design of access pattern protection

• It uses MapReduce to regulate application dataflows – protects a large

class of data-intensive applications

• It addresses both access-pattern attacks and page-fault attacks

Additional Slides

e.g., Applying HashMap to compute frequency

Traceable Memory Access: Example

Sensitive Array:

k1 k2 k3 k4 k5 … kt

x1 x2 x3 x4 x5 … xn

…

HashMap

Memory 0xa 0xb 0xc 0xd 0xe … 0xt

Sequentially read the array (safe)
• Update the HashMap
• Direct Access to memory

3 2 1 80 1 … 2Access # of times

Reveals frequency distribution

Consider a Malicious OS
• Cannot see actual data
• Capable of observing Memory Accesses

SGX-MR: Access Pattern Leakages - Sorting

Sorting Algorithm (i.e., Merge Sort) leaks relative order
• Adversary observes block reading pattern from Untrusted Memory
• If R4 ≤ L1, then the Merge Phase reads R1 to R4 one by
• Then reads L1 to L4.
• Reading pattern leaks relative order of the blocks

SGX-MR: Access Pattern Leakages - Sorting

Mitigation for Block Access
• Replacing Merge Sort with Oblivious Sorting algorithm
• We implemented block-level Bitonic Sort
• Uniform block access does not leak pattern

SGX-MR: Access Pattern Leakages - Sorting

Leakage for In-Enclave Memory Access
• Page-fault attack reveals access pattern for Enclave Memory
• Reveals memory page access
• Sequential memory access does not reveal additional information

Compare and Swap in Bitonic Sort
• Generates data dependent branching
• Reveals partial ordering of records

SGX-MR: Access Pattern Leakages - Sorting

Mitigation for In-Enclave Memory Access
• Adopt oblivious swap, oblivious move, etc.
• Leverage CMOV (conditional move)

instruction from x86 instruction set

Copy Information
from sensitive array

Oblivious
swap

SGX-MR: Access Pattern Leakages - Reducing

Reduce phase leaks group size
• K2 spread over three blocks
• Reads three blocks but write one block
• Adversary observes group wise aggregation
• Reveals average group size

SGX-MR: Experimental Results

Block Access

Figure A Figure B

ORAM protected Block access can be x1000 times slower
than sequential Block Access

While the block size is increased from 1 KB to 6 MB,
the execution time is reduced by about 50 to 100 times

SGX-MR: Experimental Results

Oblivious Sort vs ORAM integrated Merge Sort

MergeSort with the ORAM block I/O results
significantly higher costs than
a dedicated oblivious sorting

Figure A

SGX-MR: Experimental Results

Mitigations for Sorting

Mitigation method brings noticeable cost Still, efficient than ORAM based solution

Figure A Figure B*

*Figure B also shows block size have significant impact on execution time

