Making Your Program Oblivious:

a Comparative Study for Side-channel-safe
Confidential Computing

AKM Mubashwir Alam, Keke Chen

Trustworthy and Intelligent Computing Lab (TIC)
Department of Computer Science
Marquette University



Cloud Computing and Security Concerns

Storage

Mobile

Applications
Cloud E
computing

=S
. Program Data
Security concerns: . ‘
8
User Result

Goal

Confidentiality: Server learns nothing
Integrity: Server returns accurate result
Efficiency: Faster execution time

Compromise
Security?

server ¥ Tamper program
v' Tamper data
v’ Steal sensitive information

UNIVERSITY

MARQUEITE




Confidential Computing with TEE

e Hardware assisted approach
e Provides:

-------------------------
IIII

*

— Secure Multiparty Computation

— Confidentiality ' Memory {Trusted E"C'ave‘gi

— Integrity E E Encl:)r;/fated ! Plai{r;'[;zta E

— Efficiency a N |-

e Faster Computation than existing crypto approaches A P
- Homomorphic Encryption :\::::ﬁ:::::::ﬁ:__R:a_siricted by CPU

‘ :

____________________________________

— Other hybrid crypto-protocols
TEE Security

TrustZone®

Security Foundation by ARM®

SGX

BE THE
, MARQUEITE | B FERENCE.




Side-Channel Attacks

Adversary cannot access Enclave’s restricted memory

e e e e e e e W W W W M e e M M M M e e e e e R R e e e e e e e Ee e e e e e

o N ([ CPU h}

: Trusted — Cache <«——|CPU :

However, adversary may observe: ; o = ——>(Core ||
v Untrusted memory interactions \_ f Q )

v’ Enclave Page loading ! ﬁ :

v CPU Cache access time \\ :

A {3 Side-Channel

: ﬁEnc[:)rggtec‘lJ‘ Attacks :

E . Untrusted Memory E

‘ Researchers discovered series of attacks by exploiting these side-channels ‘

BE THE
I fily anquerme | sEme o




Side Channel Attacks on TEEs

* Memory-targeted attacks

= Page Fault Attack [1] [2]
= Data/Page Access Pattern Attacks [3]
= Branch Shadowing Attack [4]
e Cache Attacks
= Cache Attack [5]

* Micro-architectural Attacks

= Speculative Execution Attack [6]
= |njection based Attack [7]

[1] - Y. Xu, W. Cui, and M. Peinado, Controlled-channel attacks: Deterministic side channels for untrusted operating systems, 2015

[2] - S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Preventing page faults from telling your secrets, 2016.

[3] - J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx, “Telling Your Secrets Without Page Faults” Proc. 26th USENIX Conf. Secur. Symp.

[4] - S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, Inferring fine-grained control flow inside SGX enclaves with branch shadowing, 2017.

[5] - F. Brasser, U. Miiller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R. Sadeghi, Software grand exposure: SGX cache attacks are practical, 2017

[6] - J. Van Bulck, M. Minkin, O. Weisse et al., “FORESHADOW: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution,” Proc. 27th USENIX Secur. Symp., 2018

[7] - Jo Van Bulck, Daniel Moghimi, Michael Schwarz, et al, “LVI: Hijacking transient execution through microarchitectural load value injection. In: 2020 IEEE Symposium on Security and Privacy (SP)

BE THE



Solution for Side Channel Attacks

* Manufacturers’ guideline for developers
* Micro-architectural patches

* Access pattern protection — data obliviousness helps!

BE THE
, MARQUEITE | B FERENCE.




Data oblivious solutions for Side-Channel Protection

* Execution path doesn’t change for different inputs

* Data Access either fixed or randomized pattern

Goal

" To protect any data dependent operation
= To achieve either fixed or randomized access pattern

Data dependent code

if(a>=b){
larger = a
}else{
larger = b
¥

Oblivious code

bool cond = (a >=b)?
CMOV(cond, larger, a)
CMOV(!cond, larger, b)

//Access both memory locations
//copy only if the condition is true

BE THE
, MARQUEITE | B FERENCE.



TEE Side-channel Attacks that Data Obliviousness can address

* Memory Targeted Attacks

e Cache Attacks

 Micro-Architectural Attacks

MARQUEITE

IIIIIIIIIII

BE THE
DIFFERENCE.



Challenges of Implementing Oblivious Programs

* Unclear how complex is to develop oblivious program

* Developers' effort is unclear in manual composition
* Automated/semi-automated approaches are still immature

* Quality of generated oblivious programs

* No systematic Study

BE THE
, MARQUEITE | B FERENCE.




Our Contribution

* Comprehensive analysis on constructing data oblivious solutions
* Manual
* Compiler
* Circuit
* Framework

* Characterize the approaches
* Performance
* Ease of use
* Maturity for applications

* Develop evaluation benchmark on
* Oblivious operations
 Computation intensive tasks
* Data Intensive tasks

BE THE
Ul\gféE%sQTIYJE]TE DIFFERENCE.




Making Your Program Oblivious: Manual Approach

* To detect and apply manually
* Require depth knowledge on

* Access pattern problem
e Oblivious Algorithms, Data Structure
* Oblivious primitives in TEE

* Require analyzing for vulnerability
* High-level design of the program
* Every line of code

* Require mitigation for
* High-level interaction
* Detail level code

BE THE
, MARQUEITE | B FERENCE.




Making Your Program Oblivious: Fully Automated Approach (Compiler)

* Minimize the manual effort

* Accelerate development process

000

,1110010 |°( — Automate manual composition

s 1100110 \

/

,D 00111 O \\

l\ g O "

ﬁ; v —» Hide pattern via randomization
Compiler

* Still Experimental

* Often does not provide efficient solution

= Unnecessary obfuscation due to false positive result in Static Analysis
= Memory randomization and shuffling incurs a significantly high cost

BE THE
, MARQUEITE | B FERENCE.




Making Your Program Oblivious: Fully Automated Approach (Circuit)

* Boolean circuits
* Used in crypto for years, e.g., garbled circuit

* Naturally data independent (Oblivious) A out
» Executes all the paths B
* Concerns

* Generated circuit is large, proportional to input data size
* Simulating (hardware) circuits in software mode
* Inherently slow

BE THE



Making Your Program Oblivious: Semi-automated (framework) Approach

* Regulate the application’s data flow

* Handle most sensitive access pattern shared by applications

* Significantly reduce developers’ effort

BE THE
Ul\gféE%ngyETrE DIFFERENCE.




Making Your Program Oblivious: Semi-automated (framework) Approach

* Regulate the application’s data flow

* Handle most sensitive access pattern shared by applications

. . g y Developer only handles
* Significantly reduce developers’ effort access patterns here

Untrusted [:] Trusted :]

Untrusted SGX -MR A
E.g., SGX-MR . v
Encrypted Combsi
Files ;md meg)
o e . . . ata-Block In MR eauce
* Handles oblivious branching, sorting, group-size, etc. /MBelor::?ry\ DaBlockln || A =
| Block 2 Data-Block Out ObélVllfus
* Developer only provides map and reduce function (Bl °
SGX-MR Block Data Crypto
° [ - i i i Initiator Manager Module
Covers a wide range of data-analytics applications

SGX-MR Framework

BE THE
Ul\gféE%ngyE]TE DIFFERENCE.




Experimental Evaluations

System Configuration
* Intel(R) Core(TM) i7-8700K CPU
* 3.70GHz processor
* 16 GB of DRAM.
* Intel SGX
* Linux version is Ubuntu 22.04

Implementation
* Manual Approach — State of the art oblivious techniques
* Circuit — HyCC Circuit generator [1]
* Framework — SGX-MR [2]

Oblivious Operation
* Oblivious array access, conditional branching, oblivious sorting

Sample Application
* Compute Intensive — Edit Distance, All-pair shortest path(Floyd Warshal)
* Data Intensive — WordCount, KMeans

[1] Buscher, Niklas, et al. "HyCC: Compilation of hybrid protocols for practical secure computation." ACM SIGSAC Conference on Computer and Communications Security. 2018.
[2] A. K. M. M. Alam, et al. SGX-MR: Regulating dataflows for protecting access patterns of data-intensive SGX applications. Proceedings on PETS, 2021(1):5 — 20, 01 Jan. 2021



Experimental Results

Compute-Intensive: Building Blocks

102

T

) 2
g ~ 5| —o— Circuit
é 1 —&— Manual-Linear E 10! i E 10” —A M:;:E;]
10® [ —=— Manual-ORAM R g )
E ) H— Unprotected 0— oé\ g 1 Of; | %UnprOtCCtingx o
=108 e £ 100k - —
g T s = i g 10!
= 100 RPN o S =
A ' £ 107} S 107! —
] -2 3 107k g 107 -
g 1074 = = = 0 % % O—8—8- I
Lo 1 IR 1 L 1 111 Lu _2 m l
100 102 108 10* 10° 10 94 95 96 97 98
Number of records Unprotected ~ Manual Circuit Number of records
(a) Oblivious array access. Record (b) Oblivious branching. (c) Oblivious sorting. Record size 8
size 8 bytes. bytes.

* Oblivious solution is costly compared to unprotected versions
* Linear scan performs better than ORAM for < 10,000 records
* Manual approach is much efficient compared to circuit-based approach

BE THE
e fily anquerme | sEme o



Experimental Results

Compute-Intensive: Applications

) = 4 _
é 106 r —o— ‘Circuit E ]'Og :
o 10° F—— Manual - 107k |
E ol s g %
= 1()2 ; 101 E
g 10! g ].00 —&—  Circuit  J
§ 19(1) 8 101 —&—  Manual
[_1>_<] 10 1 gg 1 0_2 ‘ %Unprot’ected 3

1020 40 60 80 100 - 0 100 200 300 400

Sequence lengths Number of Nodes
(a) Edit Distance (b) All-pair shortest path

* Manual approach is effective: closer to unprotected version
* Circuit cost is extremely high compared to manual approach

BE THE
e jARQUETTE | BEmue



Experimental Results

Data-Intensive: Building Block
ata-Intensive: Building Blocks
- . . ‘ I
— —o—  Circuit —— Man-Linear —~ 10° +C1rcu1t—A—Manual—E!—Unprot::d
g 109 —&—Man-ORAM —=— Unproted Z 5 e
[5) 4 L —
—~ 10 S ]
g 104 ;7;;,&47—49—7-*?'*9’*"*7 a E r 3
s g 10% £ :
gV 3 10%} 1
§ 100, o PN e 8 F :3
S 1071} 1 & 101‘;/9/8//
- _3lB = = = = = i 0 1
10~ | | 100 |
3,000 9,000 15,000 21,000 250 500 1,000 1,500 2,000
Number of blocks Number of blocks
(a) Comparing random access (b) Block-based oblivious sorting.
over blocks. Block size 1 KB. Block size 1KB with 75 words per block.

* ORAM performs much better than linear scan
* Circuit approach is still expensive

BE THE



Experimental Results

Data-Intensive: Applications

5

10 F 2 107 E

é ” 2 10}

= 10°F : 103 F

5 S ol

;5; 10% G 10 3

= 2 10"k

45} 43 I .

10t I | 100 L
Manual SGX-MR  Circuit Manual SGX-MR  Circuit
(@) Application-level perfromance (b) Application-level performance
for Wordcount. Number of blocks  for KMeans. 4000 1KB-Blocks with
500 with 75 words/block. eight bytes per record, and five clus-
ters.

* Framework approach is effective
* With minimal effort close to manually crafted solution

BE THE
I fily anquerme | sEme o



Developers’ Effort

LOC: Total lines of code

AP: Access-pattern sensitive code segments

LOC-overhead: Lines used to hide access-patterns

Application Manual Circuit Framework
LOC LOC-Overhead AP LOC LOC-Overhead AP LOC LOC-Overhead AP
Edit Distance 58 28 4 48 0 - - - -
All-Pair Shortest Path 47 15 1 36 0 - - -
Word Count 277 21 6 155 0 22 0 0
KMeans 330 24 4 263 0 58 6 1

* Circuit approach require no additional overhead for access pattern protection.

* Manual approach require high effort to analyze sensitive code and write mitigations
* Frameworks, e.g., SGX-MR, protect major access-pattern issues, require minimal effort

MARQUEITE

a1l UNIVERSITY

BE THE

DIFFERENCE.



Conclusion

* Manual approach is difficult to handle
* Fully automated approaches are not yet ready

* Framework approach is effective and more practical

BE THE
, MARQUEITE | B FERENCE.




Thank You

Making Your Program Oblivious

a Comparative Study for Side-channel-safe

Confidential Computing

i BE THE
! MARQUETTE | B EReNCE.



