
Making Your Program Oblivious:
a Comparative Study for Side-channel-safe

Confidential Computing

AKM Mubashwir Alam, Keke Chen
Trustworthy and Intelligent Computing Lab (TIC)

Department of Computer Science
Marquette University

Cloud Computing and Security Concerns

Security concerns:

Goal
• Confidentiality: Server learns nothing
• Integrity: Server returns accurate result
• Efficiency: Faster execution time

Program Data

ResultUser
Server ü Tamper program

ü Tamper data
ü Steal sensitive information

+
Compromise

 Security?

Confidential Computing with TEE

TEE Application
Trusted EnclaveUntrusted

Memory

Plain Data
Encrypted

Data

Privileged System Code
OS, VMM, BIOS

{…}

Restricted by CPU

TEE Security

• Hardware assisted approach
• Provides:

– Confidentiality
– Integrity
– Efficiency

• Faster Computation than existing crypto approaches
– Homomorphic Encryption
– Secure Multiparty Computation
– Other hybrid crypto-protocols

Side-Channel Attacks

However, adversary may observe:
üUntrusted memory interactions
üEnclave Page loading
üCPU Cache access time

Adversary cannot access Enclave’s restricted memory

Researchers discovered series of attacks by exploiting these side-channels

• Memory-targeted attacks
§ Page Fault Attack [1] [2]
§ Data/Page Access Pattern Attacks [3]
§ Branch Shadowing Attack [4]

• Cache Attacks
§ Cache Attack [5]

• Micro-architectural Attacks
§ Speculative Execution Attack [6]
§ Injection based Attack [7]

Side Channel Attacks on TEEs

[1] - Y. Xu, W. Cui, and M. Peinado, Controlled-channel attacks: Deterministic side channels for untrusted operating systems, 2015
[2] - S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Preventing page faults from telling your secrets, 2016.
[3] - J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx, “Telling Your Secrets Without Page Faults” Proc. 26th USENIX Conf. Secur. Symp.
[4] - S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, Inferring fine-grained control flow inside SGX enclaves with branch shadowing, 2017.
[5] - F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R. Sadeghi, Software grand exposure: SGX cache attacks are practical, 2017
[6] - J. Van Bulck, M. Minkin, O. Weisse et al., “FORESHADOW: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution,” Proc. 27th USENIX Secur. Symp., 2018
[7] - Jo Van Bulck, Daniel Moghimi, Michael Schwarz, et al, “LVI: Hijacking transient execution through microarchitectural load value injection. In: 2020 IEEE Symposium on Security and Privacy (SP)
.

• Manufacturers’ guideline for developers

• Micro-architectural patches

• Access pattern protection – data obliviousness helps!

Solution for Side Channel Attacks

Goal
§ To protect any data dependent operation
§ To achieve either fixed or randomized access pattern

Data oblivious solutions for Side-Channel Protection

• Execution path doesn’t change for different inputs

• Data Access either fixed or randomized pattern

Data dependent code

Oblivious code

• Memory Targeted Attacks

• Cache Attacks

• Micro-Architectural Attacks

TEE Side-channel Attacks that Data Obliviousness can address

• Unclear how complex is to develop oblivious program

• Developers' effort is unclear in manual composition

• Automated/semi-automated approaches are still immature

• Quality of generated oblivious programs

• No systematic Study

Challenges of Implementing Oblivious Programs

• Comprehensive analysis on constructing data oblivious solutions
• Manual
• Compiler
• Circuit
• Framework

• Characterize the approaches
• Performance
• Ease of use
• Maturity for applications

• Develop evaluation benchmark on
• Oblivious operations
• Computation intensive tasks
• Data Intensive tasks

Our Contribution

• To detect and apply manually
• Require depth knowledge on

• Access pattern problem
• Oblivious Algorithms, Data Structure
• Oblivious primitives in TEE

• Require analyzing for vulnerability
• High-level design of the program
• Every line of code

• Require mitigation for
• High-level interaction
• Detail level code

Making Your Program Oblivious: Manual Approach

• Still Experimental

• Often does not provide efficient solution
§ Unnecessary obfuscation due to false positive result in Static Analysis
§ Memory randomization and shuffling incurs a significantly high cost

Making Your Program Oblivious: Fully Automated Approach (Compiler)

• Minimize the manual effort

• Accelerate development process

Automate manual composition

Hide pattern via randomization

Making Your Program Oblivious: Fully Automated Approach (Circuit)

• Boolean circuits
• Used in crypto for years, e.g., garbled circuit
• Naturally data independent (Oblivious)
• Executes all the paths

• Concerns
• Generated circuit is large, proportional to input data size
• Simulating (hardware) circuits in software mode
• Inherently slow

• Regulate the application’s data flow

• Handle most sensitive access pattern shared by applications

• Significantly reduce developers’ effort

Making Your Program Oblivious: Semi-automated (framework) Approach

• Regulate the application’s data flow

• Handle most sensitive access pattern shared by applications

• Significantly reduce developers’ effort

Making Your Program Oblivious: Semi-automated (framework) Approach

SGX-MR Framework

E.g., SGX-MR

• Handles oblivious branching, sorting, group-size, etc.

• Developer only provides map and reduce function

• Covers a wide range of data-analytics applications

TrustedUntrusted

Developer only handles
access patterns here

• System Configuration
• Intel(R) Core(TM) i7-8700K CPU
• 3.70GHz processor
• 16 GB of DRAM.
• Intel SGX
• Linux version is Ubuntu 22.04

• Implementation
• Manual Approach – State of the art oblivious techniques
• Circuit – HyCC Circuit generator [1]
• Framework – SGX-MR [2]

• Oblivious Operation
• Oblivious array access, conditional branching, oblivious sorting

• Sample Application
• Compute Intensive – Edit Distance, All-pair shortest path(Floyd Warshal)
• Data Intensive – WordCount, KMeans

Experimental Evaluations

[1] Büscher, Niklas, et al. "HyCC: Compilation of hybrid protocols for practical secure computation." ACM SIGSAC Conference on Computer and Communications Security. 2018.
[2] A. K. M. M. Alam, et al. SGX-MR: Regulating dataflows for protecting access patterns of data-intensive SGX applications. Proceedings on PETS, 2021(1):5 – 20, 01 Jan. 2021

Experimental Results

Compute-Intensive: Building Blocks

• Oblivious solution is costly compared to unprotected versions
• Linear scan performs better than ORAM for < 10,000 records
• Manual approach is much efficient compared to circuit-based approach

Experimental Results

Compute-Intensive: Applications

(a) Edit Distance (b) All-pair shortest path

• Manual approach is effective: closer to unprotected version
• Circuit cost is extremely high compared to manual approach

Experimental Results

Data-Intensive: Building Blocks

(a) Comparing random access
over blocks. Block size 1 KB.

(b) Block-based oblivious sorting.
Block size 1KB with 75 words per block.

• ORAM performs much better than linear scan
• Circuit approach is still expensive

Experimental Results

Data-Intensive: Applications

(a) (b)

• Framework approach is effective
• With minimal effort close to manually crafted solution

Developers’ Effort

• Circuit approach require no additional overhead for access pattern protection.
• Manual approach require high effort to analyze sensitive code and write mitigations
• Frameworks, e.g., SGX-MR, protect major access-pattern issues, require minimal effort

LOC: Total lines of code
AP: Access-pattern sensitive code segments
LOC-overhead: Lines used to hide access-patterns

Conclusion

• Manual approach is difficult to handle

• Fully automated approaches are not yet ready

• Framework approach is effective and more practical

Thank You

Making Your Program Oblivious
a Comparative Study for Side-channel-safe

Confidential Computing

